這是一部講述張量和群論的物理學(xué)專業(yè)的教程,用直觀、嚴(yán)謹(jǐn)?shù)姆椒ń榻B張量和群論以及其在理論物理和應(yīng)用數(shù)學(xué)的重要性!段锢韺W(xué)家用的張量和群論導(dǎo)論》旨在用一種比較獨特的框架,揭開張量的神秘面紗,使得讀者在經(jīng)典物理和量子物理的背景理解它。將物理計算中的許多流形公式和數(shù)學(xué)中的抽象的或者更加概念性公式的聯(lián)系起來,對張量和群論的的人來說,這項工作是很歡迎的。物理和應(yīng)用數(shù)學(xué)專業(yè)的高年級本科生和研究生都將受益于本書。
目錄: part i linear algebra and tensors i a quicklntroduction to tensors 2 vectorspaces 2.1 definition and examples 2.2 span,linearlndependence,and bases 2.3 components 2.4 linearoperators 2.5 duaispaces 2.6 non-degenerate hermitian forms 2.7 non-degenerate hermitian forms and dual spaces 2.8 problems 3 tensors 3.1 definition and examples 3.2 changeofbasis 3.3 active and passive transformations 3.4 the tensor product-definition and properties 3.5 tensor products of v and v* 3.6 applications ofthe tensor product in classical physics 3.7 applications of the tensor product in quantum physics 3.8 symmetric tensors 3.9 antisymmetric tensors 3.10 problems partii grouptheory 4 groups, lie groups,and lie algebras 4.1 groups-definition and examples 4.2 the groups ofclassical and quantum physics 4.3 homomorphismandlsomorphism 4.4 from lie groups to lie algebras 4.5 lie algebras-definition,properties,and examples 4.6 the lie algebras ofclassical and quantum physics 4.7 abstractliealgebras 4.8 homomorphism andlsomorphism revisited 4.9 problems 5 basic representation theory 5.1 representations: definitions and basic examples 5.2 furtherexamples 5.3 tensorproduet representations 5.4 symmetric and antisymmetric tensor product representations 5.5 equivalence ofrepresentations 5.6 direct sums andlrreducibility 5.7 moreonlrreducibility 5.8 thelrreducible representations ofsu(2),su(2) and s0(3) 5.9 reairepresentations andcomplexifications 5.10 the irreducible representations of st(2, c)nk, sl(2, c) ands0(3,1)o 5.11 irreducibility and the representations of 0(3, 1) and its double covers 5.12 problems 6 the wigner-eckart theorem and other applications 6.1 tensor operators, spherical tensors and representation operators 6.2 selection rules and the wigner-eckart theorem 6.3 gamma matrices and dirac bilinears 6.4 problems appendix complexifications of real lie algebras and the tensor product decomposition ofsl(2,c)rt representations a.1 direct sums and complexifications oflie algebras a.2 representations of complexified lie algebras and the tensor product decomposition ofst(2,c)r representations references index
|