本書作者采取了與許多教材以緊李群的表示論作為理論基礎(chǔ)不同的安排,并精心挑選一系列材料,以給予讀者更廣闊的視野。為介紹緊李群,本書涵蓋了 Peter-weyl定理、極大環(huán)面的共軛性(提供了兩組證明),Weyl特征標(biāo)公式等內(nèi)容。隨后本書研究了復(fù)分析群,一般非緊李群,內(nèi)容包括:Weyl 群的Coxeter表示、Iwasawa及Bruhat分解、Cartan分解、對稱空間、Cayley變換、相對根系、Satake圖形,擴(kuò)展的 Dyakin圖以及李群嵌入的方式綜述。本書通過介紹表示論在多種領(lǐng)域中的應(yīng)用(這些領(lǐng)域有:隨機(jī)矩陣論、Toeplitz矩陣的子式、對稱代數(shù)分解、 Gelfand對、Hecke代數(shù)、有限一般線性群的表示及Grassmann簇與旗簇的上同調(diào)),并將對稱群的表示論與酋群間的Frobenius- Schur對偶作為統(tǒng)一的主題處理,使讀者能夠?qū)Ρ硎纠碚撚懈由羁痰乩斫狻?
目錄: Preface Part Ⅰ: Compact Groups 1 Haar Measure 2 Schur Orthogonality 3 Compact Operators 4 The Peter-Weyl Theorem Part Ⅱ: Lie Group Fundamentals 5 Lie Subgroups of GL(n, C) 6 Vector Fields 7 Left-Invariant Vector Fields 8 The Exponential Map 9 Tensors and Universal Properties 10 The Universal Enveloping Algebra 11 Extension of Scalars 12 Representations of S1(2, C) 13 The Universal Cover 14 The Local Frobenius Theorem 15 Tori 16 Geodesics and Maximal Tori 17 Topological Proof of Cartan's Theorem 18 The Weyl Integration Formula 19 The Root System 20 Examples of Root Systems 21 Abstract Weyl Groups 22 The Fundamental Group 23 Semisimple Compact Groups 24 Highest-Weight Vectors 25 The Weyl Character Formula 26 Spin 27 Complexification 28 Coxeter Groups 29 The Iwasawa Decomposition 30 The Bruhat Decomposition 31 Symmetric Spaces 32 Relative Root Systems 33 Embeddings of Lie Groups Part Ⅲ: Topics 34 Mackey Theory 35 Characters of GL(n,C) 36 Duality between Sk and GL(n,C) 37 The Jacobi-Trudi Identity 38 Schur Polynomials and GL(n,C) 39 Schur Polynomials and Sk 40 Random Matrix Theory 41 Minors of Toeplitz Matrices 42 Branching Formulae and Tableaux 43 The Cauchy Identity 44 Unitary Branching Rules 45 The Involution Model for Sk 46 Some Symmetric Algebras 47 Gelfand Pairs 48 Hecke Algebras 49 The Philosophy of Cusp Forms 50 Cohomology of Grassmannians References Index
|