作品介紹

李群


作者:DanielBump     整理日期:2017-02-24 17:17:04


  本書作者采取了與許多教材以緊李群的表示論作為理論基礎(chǔ)不同的安排,并精心挑選一系列材料,以給予讀者更廣闊的視野。為介紹緊李群,本書涵蓋了 Peter-weyl定理、極大環(huán)面的共軛性(提供了兩組證明),Weyl特征標(biāo)公式等內(nèi)容。隨后本書研究了復(fù)分析群,一般非緊李群,內(nèi)容包括:Weyl 群的Coxeter表示、Iwasawa及Bruhat分解、Cartan分解、對稱空間、Cayley變換、相對根系、Satake圖形,擴(kuò)展的 Dyakin圖以及李群嵌入的方式綜述。本書通過介紹表示論在多種領(lǐng)域中的應(yīng)用(這些領(lǐng)域有:隨機(jī)矩陣論、Toeplitz矩陣的子式、對稱代數(shù)分解、 Gelfand對、Hecke代數(shù)、有限一般線性群的表示及Grassmann簇與旗簇的上同調(diào)),并將對稱群的表示論與酋群間的Frobenius- Schur對偶作為統(tǒng)一的主題處理,使讀者能夠?qū)Ρ硎纠碚撚懈由羁痰乩斫狻?

目錄:
  Preface
  Part Ⅰ: Compact Groups
  1 Haar Measure
  2 Schur Orthogonality
  3 Compact Operators
  4 The Peter-Weyl Theorem
  Part Ⅱ: Lie Group Fundamentals
  5 Lie Subgroups of GL(n, C)
  6 Vector Fields
  7 Left-Invariant Vector Fields
  8 The Exponential Map
  9 Tensors and Universal Properties
  10 The Universal Enveloping Algebra
  11 Extension of Scalars
  12 Representations of S1(2, C)
  13 The Universal Cover
  14 The Local Frobenius Theorem
  15 Tori
  16 Geodesics and Maximal Tori
  17 Topological Proof of Cartan's Theorem
  18 The Weyl Integration Formula
  19 The Root System
  20 Examples of Root Systems
  21 Abstract Weyl Groups
  22 The Fundamental Group
  23 Semisimple Compact Groups
  24 Highest-Weight Vectors
  25 The Weyl Character Formula
  26 Spin
  27 Complexification
  28 Coxeter Groups
  29 The Iwasawa Decomposition
  30 The Bruhat Decomposition
  31 Symmetric Spaces
  32 Relative Root Systems
  33 Embeddings of Lie Groups
  Part Ⅲ: Topics
  34 Mackey Theory
  35 Characters of GL(n,C)
  36 Duality between Sk and GL(n,C)
  37 The Jacobi-Trudi Identity
  38 Schur Polynomials and GL(n,C)
  39 Schur Polynomials and Sk
  40 Random Matrix Theory
  41 Minors of Toeplitz Matrices
  42 Branching Formulae and Tableaux
  43 The Cauchy Identity
  44 Unitary Branching Rules
  45 The Involution Model for Sk
  46 Some Symmetric Algebras
  47 Gelfand Pairs
  48 Hecke Algebras
  49 The Philosophy of Cusp Forms
  50 Cohomology of Grassmannians
  References
  Index





上一本:數(shù)論概貌 下一本:數(shù)值方法和MATLAB實(shí)現(xiàn)與應(yīng)用

作家文集

下載說明
李群的作者是DanielBump,全書語言優(yōu)美,行文流暢,內(nèi)容豐富生動引人入勝。為表示對作者的支持,建議在閱讀電子書的同時,購買紙質(zhì)書。

更多好書