作品介紹

現(xiàn)代數(shù)學(xué)物理方法


作者:M.Reed     整理日期:2017-02-24 17:07:48


  正在艱難地閱讀中……

目錄:
  Preface
  Introduction
  Contents of Other Volumes
  I: PRELIMINARIES
  1. Sets and functions
  2. Metric and normed linear spaces
  Appendix Lira sup and lim inf
  3. The Lebesgue integral
  4. Abstract measure theory
  5. Two conrergence arguments
  6. Equicontinuity
  Notes
  Problems
  II: HILBERT SPACES
  1. The geometry of Hilbert space
  2. The Riesz lemma
  3. Orthonormal bases
  4. Tensor products of Hilbert spaces
  5. Ergodic theory: an introduction
  Notes
  Problems
  III: BANACH SPACES
  1. Definition and examples
  2. Duals and double duals
  3. The Hahn-Banach theorem
  4. Operations on Banach spaces
  5. The Baire category theorem and its consequences
  Notes
  Problems
  IV: TOPOLOGICAL SPACES
  1. General notions
  2. Nets and Convergence
  3. Compactness
  Appendix The Stone-Weierstrass theorem
  4. Measure theory on Compact spaces
  5. Weak topologies on Banach spaces
  Appendix Weak and strong measurability
  Notes
  Problems
  V: LOCALLY ONVEX SPACES
  1. General properties
  2. Frdchet spaces
  3. Functions of rapid decease and the tempered distributions
  Appendix The N-representation for and
  4. Inductive limits: generalized functions and weak solutions of partial differential equations
  5. Fixed point theorems
  6. Applications of fixed point theorems
  7. Topologies on locally convex spaces: duality theory and the strong dual topology
  Appendix Polars and the Mackey-Arens theorem
  Notes
  Problems
  VI: BOUNDED OPERATORS
  VII: THE SPECTRAL THEOREM
  VIII: UNBOUNDED OPERATORS
  THE FOURIER TRANSFORM
  SUPPLEMENTARY MATERIAL
  List of Symbols





上一本:三角函數(shù)超入門 下一本:千萬(wàn)別恨數(shù)學(xué)

作家文集

下載說明
現(xiàn)代數(shù)學(xué)物理方法的作者是M.Reed,全書語(yǔ)言優(yōu)美,行文流暢,內(nèi)容豐富生動(dòng)引人入勝。為表示對(duì)作者的支持,建議在閱讀電子書的同時(shí),購(gòu)買紙質(zhì)書。

更多好書